学而思研发面向全球数学爱好者大模型MathGPT

AI人工智能2年前发布 ash
664 0


面向全球数学爱好者和科研机构,计划于年内推出

据了解,学而思正在进行自研数学大模型的研发,命名为MathGPT,面向全球数学爱好者和科研机构,以数学领域的解题和讲题算法为核心,目前已经取得阶段性成果,并将于年内推出基于该自研大模型的产品级应用。

据悉,学而思已将MathGPT作为公司核心项目,由CTO田密负责,今年春节前,该项目已经启动相应的团队建设、数据、算力准备和技术研发。此外,学而思已经启动在美国硅谷的团队建设,将成立一支海外算法和工程团队,在全球范围内招募优秀的

人工智能

专家加入。


MathGPT与大

语言模型

(LLM)的差异

美国OpenAI公司在今年三月份发布了大

语言模型

GPT-4,国内百度、阿里也发布了各自的大模型产品,但通用

语言模型

更像一个“文科生”,在语言翻译、摘要、理解和生成等任务上有出色表现,在数学问题的解决、讲解、问答和推荐方面则存在明显不足:解答数学问题经常出错,有些数学问题虽然能够解决,但方法更偏成年人,无法针对适龄孩子的知识结构和认知水平做适配。

“这种不足是由LLM模型的自身特点决定的。”学而思AI团队负责人介绍,LLM大模型来自对海量语言文本的训练,因此最擅长语言处理。行业内偏向基于LLM大模型做阅读、写作类应用,但如果想要在数学能力上有突破,就需要研发新的大模型。因此,学而思决心组建团队专研MathGPT——数学领域大模型,用自己在数学和AI上的多年积累,面向全球范围内的数学爱好者和科研机构,做好AI大模型时代的数学基础工作。

学而思希望通过MathGPT弥补和攻克大

语言模型

的三个问题:第一,题目要解对,现在GPT结果经常出现错误;第二,解题步骤要稳定、清晰,现在GPT的解题步骤每次都不一样,而且生成内容经常很冗余;第三,解题要讲的有趣、个性化,现在GPT的解释过于“学术”和机械,对孩子的学习体验很不友好。


做MathGPT,学而思凭什么

学而思作为获国家科技部批准的“智慧教育国家新一代

人工智能

开放创新平台”建设单位,也是教育行业唯一一家

人工智能

“国家队”成员,在

人工智能

领域有着多年的深入研究,早在2017年,学而思便成立了AI lab

人工智能

实验室。

据公开信息显示,基于智慧教育

人工智能

开放创新平台助力,学而思AI lab获得各类顶级学术会议比赛冠军16项,亚军6项;发表国际期刊和会议高水平学术论文31篇,包含

光学字符识别

、图像、

自然语言处理

、语音以及多模态等多领域的学术研究,在

计算机视觉

顶会以及自然语言顶会中均有多篇论文发表;申请专利220余项,授权专利150余项,软件著作权60余项。

学而思研发面向全球数学爱好者大模型MathGPT

学而思AI lab在各类顶级学术会议比赛获奖情况

“以数学起家”的学而思至今已有20年的数学教学经验,积累了庞大的数学相关数据,这些数据是进行MathGPT训练的必备物料。另外,学而思的海外业务Think Academy在全球若干国家和地区深受数学爱好者喜欢,学而思的学生在每年的IMO和AMC等国际数学竞赛中表现优异,每年都有多位学生在国际奥林匹克数学竞赛中拿到金牌。所以,学而思选择在MathGPT方向发力也顺理成章。

另据了解,学而思学习机近期将会上线一款“AI助手”,涵盖作文助手、口语助手、阅读助手、数学助手等相关功能,该AI产品将于5月11日开启内测。


MathGPT的挑战和技术难题

如何利用大

语言模型

服务各行各业是当下社会的焦点问题。比如在教育领域,Duolingo、Quizlet、可汗学院等产品主要和OpenAI合作,在GPT大模型上做微调和接口调用,增强原有的产品体验。但也有一些领域如数学、医学等,对AI的需求是准确、清晰、具备强大的

逻辑

推理能力,且容错率低,通用LLM目前的性能表现还无法在上述领域取得突破,未来是否可能取得突破尚不清晰。

以数学领域为例,目前市场上有几个主要流派。比如Google收购的Photomath、微软数学、Mathway、专注数学计算的WolframAlpha等产品,主要利用非LLM的传统AI技术加上

数据库

的方式解决数学问题。走AGI路线的公司则尝试让通用LLM“更懂数学”,比如GPT4在数学任务上比之前的3.5版本性能更好,谷歌旗下的Minerva模型也专门针对数学问题进行调优。学而思选择了另一条少有人走的路,不基于现有LLM做微调和接口调用、不做通用LLM,而是自研基于专业领域的“数学大模型”MathGPT,致力于打造自主、稳定、可持续、高质量的学习解决方案。

在大

语言模型

不断进化的浪潮下,不同的技术路线选择孰优孰劣,仍有待讨论和验证。学而思自研独立的MathGPT大模型是否成立,是否能够超越通用模型在数学任务上的表现,是否更匹配不同人群的数学学习场景,这个问题还需要在创新实践中寻找答案。随着整个行业的深化发展和越来越多人才参与到这个领域,相信不久的将来就能看到更为成熟的解决方案。

© 版权声明

相关文章

暂无评论

none
暂无评论...