但是,令人担忧的是,学生们也会用它来写作业。前段时间的一项调查表明,美国近 9 成的学生已经在用 ChatGPT 写作业了,有篇 ChatGPT 生成的论文甚至拿到了全班第一。对于学校老师来说,这一变化来得过于突然。在还没想出对策之前,有些学校直接选择了禁用。
同样给 ChatGPT 下了禁令的还有一些公司,包括花旗、高盛、摩根大通等华尔街金融机构,因为他们担心员工在使用 ChatGPT 的时候会泄露公司敏感信息。
这些手忙脚乱的应对措施反映出一个问题:
我们这个社会还没有为 ChatGPT 这类 AI
生成模型
的到来做好准备
,相关问题的讨论需要被提上日程。或许这也是近期举办的全球
人工智能
开发者先锋大会「
由知道智:AI 安全与伦理洞察主题论坛
」座无虚席的原因。
虽然大会的主题是「A 安全与伦理洞察」,但嘉宾的讨论范围没有局限于此,而是加入了多个维度的讨论,从 ChatGPT 等 AI
生成模型
对基础研究的影响到它的应用问题再到新时代人才培养思路,各个角度都展开了深入探讨。透过这个论坛,大家试图勾勒出一个问题的答案:
在已经到来的 AIGC 时代,我们要如何应对
?
ChatGPT 给科研领域带来了哪些启发和挑战?
今年 1 月份,因为对 ChatGPT 的评价过于苛刻,图灵奖得主 Yann LeCun 被送上了热搜。在他看来,「就底层技术而言,ChatGPT 并没有什么特别的创新,」也不是「什么革命性的东西」,只能算一个像样的工程实例。
「ChatGPT 是否具有革命性」是个充满争议的话题。但毋庸置疑,它确实是一个工程上的杰作。在现场,
中国科学院院士鄂维南
也指出了这一点。
他还强调,这一杰作是 OpenAI 逐步验证、集中投入的结果。其中,「集中投入」这点是非常重要的。因为 OpenAI 的成功表明,以往那种「小作坊、项目制」的 AI 赋能方式正在成为历史,而「AI 工程化、平台化」正成为释放
人工智能
技术红利的重要支撑。如果能够适应这种变化,AI 在自然语言领域所取得的成功,有望在基础科学研究领域被复制。这也是鄂维南院士所从事的 AI for Science 领域的工作。
当然,这项工作并不容易,需要我们集中力量去构建用于基础科学研究的平台化基础设施,包括数据、基础软件工具、算力平台、智能化科研平台等。在过去的几年,鄂院士已经带领团队做了一些这方面的工作,发布了原子间势能函数预训练模型等重要成果。
不过,他们的工作还面临很多挑战,比如积累的数据格式不一、噪声大,软件缺乏基本的测试体系,算力基础设施跟不上等等。在鄂院士看来,这属于「黎明前的黑暗」,只有敢于在原始创新方向上集中资源,我们才能迎来曙光。
除了自然科学,ChatGPT 的出现对于社会科学领域的研究者也有一定的启发。对此,
华东师范大学政治与国际关系学院院长吴冠军
贡献了非常有价值的思路。
吴院长指出,在 ChatGPT 面前,社会科学研究者应该有一些危机感。首先,它的背后是巨量的数据,这些数据可能是人类学者靠传统的田野调查搜集不到的,而且它能够在短时间内处理大量数据。其次,它「读」了大量的书,这些书,人可能一辈子也读不完。
「我们正在面对(技术)奇点,但是我们很多学者却茫然不知,」吴冠军说到。
这里的技术奇点指的是一个根据技术发展史总结出的观点,认为未来将要发生一件不可避免的事件:技术发展将会在很短的时间内发生极大的接近于无限的进步。届时,我们熟悉的知识、价值、规则全部会失效。
因此,他呼吁,社会科学家需要和其他科学家一起,推进对技术奇点时代的研究。这种研究以亚里士多德知识分类法中的「实践性知识」(比如伦理、政治)为主,因为在另外两类知识(生产性知识和理论性知识)领域,AI 已经开始学习甚至学得比人类好了。而在政治等实践性知识领域,AI 还只能复述,无法创造新的世界。因此,吴院长认为,人类在这一领域将大有可为。
AIGC 市场即将爆发,应用端要如何做好准备?
前几天,OpenAI 在千呼万唤中发布了 ChatGPT 的 API,而且价格非常便宜,生成百万 token 仅需 2 美元。对于应用端来说,这是一个颇为振奋人心的消息。与此同时,国内的类 ChatGPT 产品的研发也在加快,本月也将有新产品问世。可以预见的是,在未来的一年,由 AIGC 模型支持的应用将在国内外集中爆发。
但与此同时,我们对于应用端的投入似乎并没有跟上,这是
德勤中国主席蒋颖
观察到的现象。
具体来说,她发现我国的
人工智能
发展对于研发供给侧和应用需求侧的投入存在失衡现象。这种失衡表现在三个方面。
首先,在角色方面,当前很多的决策组织主要还是由科研机构、科技企业构成,行业协会等应用场景的相关方参与相对不足。因此,蒋颖认为,我们需要建立一个多方参与的联盟,从而进一步提升转化需求侧力量在
人工智能
发展中的策源作用。
其次,在发展方面,通过技术创新来提升
人工智能
发展已经被充分提及并得到大量支持,但模式创新的力量还没有得到充分重视。因此,蒋颖提出,我们应该鼓励
人工智能
创新商业模式的实际运用,加大这方面的研究。
最后,在人才培养方面,现在很多高校都设立了
人工智能
相关专业,但这些专业大多局限于理工类知识和技能的培养,导致具备技术和管理应用双向知识的人才相对匮乏。要知道,在实际应用场景中,要想让 AI 真正发挥经济效能,仅仅用它来完成某个生产线的工作是不够的,整个流程、管理架构都需要转变,能满足这类需求的人才现阶段是非常稀缺的。
在应用层面,
商汤科技
智能产业研究院院长、上海
人工智能
研究院副院长田丰
也分享了自己的观点,不过他更加关注的是 AI 应用过程中存在的各种风险,包括模型风险、数据风险等等。
具体来说,田丰主张用技术及管理工具去提升企业 AI 伦理治理能力。在过去的几年,
商汤科技
已经自研了一套 AI 伦理风险的治理工具箱,包括数字水印、数据脱敏、数据沙箱、模型体检平台等,覆盖设计、开发、部署、上线这样一个完整的产品生命周期。
未来,商汤还将基于自身实践积累,上线 “AI 安全开放平台”,为行业提供模型体检、模型防御、数字内容版权保护、创作风格保护等公益服务,推动形成开放、可信的
人工智能
创新生态。
学生都在用 ChatGPT,老师怎么办?
在论坛现场,
上海大学副校长汪小帆
被问到了一个问题:上海大学会禁止学生用 ChatGPT 吗?对此,汪校长回答说:不主张禁用。
在他看来,ChatGPT 等 AI 工具的出现有其积极的一面。
在教学实践中,它可以为学生提供即时的反馈,像 AlphaGo 辅助人类棋手一样帮助学生更快地取得进步。回想一下,30 年前,我们还在图书馆一本一本地查阅文献;20 年前,我们开始在网上快速检索文献;而今天,ChatGPT 已经能够帮我们把文献整理成摘要或综述了。这无疑大大提高了我们学习知识的效率。
在教学内容和方法上,它会迫使教学工作者去反思:我们的教育应该传授什么样的知识?如何利用 ChatGPT 这类工具让我们高等教育的「教」和「学」更加高效?经过这一轮反思和变革,高等教育可能会更加贴近其本质。就像爱因斯坦所说,「大学教育的价值不在于记住很多事实,而是训练大脑会思考…… 被放在首要位置的永远应该是独立思考和判断的总体能力的培养,而不是获取特定的知识」。
当然,ChatGPT 给高校教育带来的问题也是无法回避的。对此,汪校长提出了三项需要做的工作:一是有章可循,即制定在教学和研究中使用 AIGC 的指导性原则,并确保学生和教师都能了解和遵循这些准则;二是合理使用,即支持在教、学和研究中合理使用 AIGC,但采取有效举措禁止抄袭等学术不端行为;三是教学示范,即教师在教学和研究过程中起到示范作用,并把合理使用 AIGC 等
人工智能
技术纳入学术诚信和伦理道德课程教学。
人工智能
发展,不能走汽车老路
除了嘉宾们的精彩分享,本次论坛还诞生了两项重要成果。
第一项成果是上海标准《信息技术
人工智能
系统生命周期治理指南》工作组核心专家成员获颁聘书。该指南将从 AI 算法模型的概念设计开始,贯穿开发、测试评估、部署、运行监控、退出使用的完整生命周期,为
人工智能
系统的治理提供指导。这是国内首个关于
人工智能
系统治理的地方标准,旨在以标准规则促进发展,通过技术手段和监管措施守住安全和伦理的底线,确保类似 AIGC 等技术充分发挥其社会价值、经济价值,用实际成效树立
人工智能
发展的「上海经验」。
第二项成果《2023 上海
人工智能
安全伦理倡议书》的发布与签署。《倡议书》以《上海市促进
人工智能
产业发展条例》为指导,倡导
人工智能
开发者向光而行,确保
人工智能
行业朝着公平公正、内容安全、隐私保护、互联互通、共建共享共治方向不断前进,向上发展。来自上海市
人工智能
行业协会、上海中青年知识分子联谊会、上海临港集团、信通院华东分院、市软件开发中心等代表共同签署了《倡议书》。
为什么要做这两件事?在演讲中,汪校长提到了一个冷知识:汽车是 19 世纪末被发明出来的,但直到 20 世纪下半叶,不同的国家才出台了强制要求开车系安全带的法规。可以想象,这中间必然有多少人白白丧命。
仔细想一下,现在的我们其实有点像 19 世纪那些刚刚接触汽车的人们:新兴的 AIGC 在加速狂飙,但开车的人却没有法规去约束,坐车的人也没有安全带可系。这些问题迫在眉睫。
「今天
人工智能
的发展,显然不能走汽车的这条路,」汪校长语重心长地说。以论坛为起点,社会各方都在探索一条新的路径,让我们能够从容地应对 AIGC 时代的到来。
© 版权声明
文章版权归作者所有,未经允许请勿转载。
相关文章
暂无评论...