举例来说,如果你想试用 BERT
语言模型
的 Demos,可以转到 BERT 论文的 arXiv 页面,然后导航到 Demos 选项卡。这时你将看到开源社区构建的 200 多个 Demos——一些 Demos 只是展示 BERT 模型,而其他 Demos 则展示修改或使用 BERT 作为更大 pipeline 一部分的相关应用程序。
这里,我们也亲自试用了一下,例如在论文《Deep Residual Learning for Image Recognition》的 arXiv 摘要界面,在 Demos 选项卡下有 7 个相关的开源 Demos,用户可以点击相应的链接进入。
Hugging Face Spaces 是 Hugging Face 于 2021 年 10 月推出的,主要用于构建和共享开源
机器学习
的 Demos 演示,数量多达 12000 个。借助 Spaces,Hugging Face 用户实现了共享、探索以及对模型的讨论,此外,研究者还构建了交互式应用程序,这样一来使用浏览器的人都可以在不运行代码的情况下进行尝试。这些 Demos 是使用开源工具(如 Gradio 和 Streamlit Python 库)构建的,并利用了 Hugging Face Hub 上的模型和数据集。
Spaces 地址:https://huggingface.co/spaces
Demos 这一功能有助于提高研究者对模型工作原理的认识和理解,扩大研究人员工作的可见度。让用户无需编写一行代码就可以探索论文结果,从而提高研究的可复现性。还没有试用的小伙伴,可以上手体验了。
参考链接:https://huggingface.co/blog/arxiv
© 版权声明
文章版权归作者所有,未经允许请勿转载。
相关文章
暂无评论...